Growth and differentiation of primary and passaged equine bronchial epithelial cells under conventional and air-liquid-interface culture conditions

نویسندگان

  • Getu Abraham
  • Claudia Zizzadoro
  • Johannes Kacza
  • Christin Ellenberger
  • Vanessa Abs
  • Jana Franke
  • Heinz-Adolf Schoon
  • Johannes Seeger
  • Yohannes Tesfaigzi
  • Fritz R Ungemach
چکیده

BACKGROUND Horses develop recurrent airway obstruction (RAO) that resembles human bronchial asthma. Differentiated primary equine bronchial epithelial cells (EBEC) in culture that closely mimic the airway cells in vivo would be useful to investigate the contribution of bronchial epithelium in inflammation of airway diseases. However, because isolation and characterization of EBEC cultures has been limited, we modified and optimized techniques of generating and culturing EBECs from healthy horses to mimic in vivo conditions. RESULTS Large numbers of EBEC were obtained by trypsin digestion and successfully grown for up to 2 passages with or without serum. However, serum or ultroser G proved to be essential for EBEC differentiation on membrane inserts at ALI. A pseudo-stratified muco-ciliary epithelium with basal cells was observed at differentiation. Further, transepithelial resistance (TEER) was more consistent and higher in P1 cultures compared to P0 cultures while ciliation was delayed in P1 cultures. CONCLUSIONS This study provides an efficient method for obtaining a high-yield of EBECs and for generating highly differentiated cultures. These EBEC cultures can be used to study the formation of tight junction or to identify epithelial-derived inflammatory factors that contribute to lung diseases such as asthma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equine marrow-derived mesenchymal stem cells: isolation, differentiation and culture optimization

Most studies regarding the marrow-derived equine mesenchymal stem cells (MSCs) have mainly focusedon the cell transplantation without considering the capacity of differentiation and in vitro requirements of thecells. These concerns were investigated in the present study. Equine MSCs were isolated from the sternalmarrow aspirates and expanded through two successive subcultures. Passage-2 equine ...

متن کامل

Epidermal Growth Factor Removal or Tyrphostin AG1478 Treatment Reduces Goblet Cells & Mucus Secretion of Epithelial Cells from Asthmatic Children Using the Air-Liquid Interface Model

RATIONALE Epithelial remodelling in asthma is characterised by goblet cell hyperplasia and mucus hypersecretion for which no therapies exist. Differentiated bronchial air-liquid interface cultures from asthmatic children display high goblet cell numbers. Epidermal growth factor and its receptor have been implicated in goblet cell hyperplasia. OBJECTIVES We hypothesised that EGF removal or tyr...

متن کامل

Differentiation-dependent responsiveness of bronchial epithelial cells to IL-4/13 stimulation.

The Th2 cytokines interleukin (IL)-4 and IL-13 are thought to play critical roles in the airway inflammation and hyperresponsiveness that characterize asthma. Recent evidence indicates that IL-13 can mediate these effects by acting directly on airway epithelial cells. Here we evaluated early [signal transducer and activator of transcription (STAT)6 phosphorylation] and delayed [granulocyte/macr...

متن کامل

Equine Bone Marrow Derived Mesenchymal Stem Cells: Isolation and Multilineage Differentiation

Objective- To evaluate growth characteristics and differentiation capacity of equine mesenchymal stem cell (eMSCs) derived from bone marrow (BM). Study design- In vitro experimental study. Animals- Four young adult horses (2-5 years old) Procedure- Cell morphology and growth characteristics of eMSCs harvested from BM were evaluated in standard culture conditions. eMSCs in passage 3 were subj...

متن کامل

The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia.

Organotypic cultures of primary human airway epithelial cells have been used to investigate the morphology, ion and fluid transport, innate immunity, transcytosis, infection, inflammation, signaling, cilia, and repair functions of this complex tissue. However, we do not know how closely these cultures resemble the airway surface epithelium in vivo. In this study, we examined the genome-wide exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011